31.25. Model: Assume ideal connecting wires but not an ideal battery.

Visualize: The circuit for an ideal battery is the same as the circuit in Figure Ex31.25, except that the 1 Ω resistor is not present.

Solve: In the case of an ideal battery, we have a battery with $\mathcal{E} = 15$ V connected to two series resistors of 10 Ω and 20 Ω resistance. Because the equivalent resistance is $R_{eq} = 10 \Omega + 20 \Omega = 30 \Omega$ and the potential difference across R_{eq} is 15 V, the current in the circuit is

$$I = \frac{\Delta V}{R_{\rm eq}} = \frac{\mathcal{E}}{R_{\rm eq}} = \frac{15 \text{ V}}{30 \Omega} = 0.5 \text{ A}$$

The potential difference across the 20 Ω resistor is

$$\Delta V_{20} = IR = (0.5 \text{ A})(20 \Omega) = 10 \text{ V}$$

In the case of a real battery, we have a battery with $\mathcal{E} = 15$ V connected to three series resistors: 10 Ω , 20 Ω , and an internal resistance of 1.0 Ω . Now the equivalent resistance is

$$R'_{eq} = 10 \ \Omega + 20 \ \Omega + 1.0 \ \Omega = 31 \ \Omega$$

The potential difference across R_{eq} is the same as before ($\mathcal{E} = 15$ V). Thus,

$$I' = \frac{\Delta V'}{R'_{eq}} = \frac{\mathcal{E}}{R'_{eq}} = \frac{15 \text{ V}}{31 \Omega} = 0.4839 \text{ A}$$

Therefore, the potential difference across the 20 Ω resistor is

$$\Delta V'_{20} = I'R = (0.4839 \text{ A})(20 \Omega) = 9.68 \text{ V}$$

That is, the potential difference across the 20 Ω resistor is reduced from 10 V to 9.68 V due to the internal resistance of 1 Ω of the battery. The percentage change in the potential difference is

$$\left(\frac{10 \text{ V} - 9.68 \text{ V}}{10 \text{ V}}\right) \times 100 = 3.23\%$$